Améliorer la qualité de ses fourrages

Etat des lieux des fourrages récoltés en 2018 – Le cas des exploitations suivies dans le cadre du GAL NOV 'ARDENNE

Libramont, le 26 février 2019

Aude BERNES – Sébastien CREMER
ASBL Centre de Michamps

Le Centre de Michamps

Centre de recherche en agriculture et environnement

- Structure encadrée par l'UCL, la Province de Luxembourg et la Wallonie ;
 - Laboratoire d'analyses de sols, de fourrages, d'engrais de ferme, d'eaux et de denrées alimentaires ainsi que de maladies des cultures ;
 - Conseils pour l'élaboration des plans de fertilisation, des rations alimentaires, de la gestion des prairies et des cultures;
 - Services aux agriculteurs, notamment via le dépôt de colostrum, mise à disposition de sondes à terre...;
- Expérimentation en prairies, cultures et vergers.

Plan de l'exposé

- Comment réaliser une analyse de fourrage ;
- Le parcours d'une analyse de fourrage ;
- Interprétation des résultats ;
- Résultats des analyses de fourrages analysés en 2018 en Province de Luxembourg par le Centre de Michamps;
- Cas particuliers des agriculteurs suivis dans le projet du GAL NOV'ARDENNE;
- Pistes pour améliorer la qualité de ses fourrages ;
- La qualité des fourrages en fonction des besoins des bovins viandeux;
- Questions Réponses.

A quoi servent-elles?

Etablir son plan de rationnement

L'agriculteur doit pouvoir estimer la richesse de ses fourrages afin d'établir des rations équilibrées pour ses animaux.

L'analyse de ceux-ci, correctement réalisée et bien exploitée, est un outil qui permet de mieux valoriser l'argent consacré à l'alimentation animale.

Avant l'échantillonnage

- Réunir des indications précieuses avec l'agriculteur (date de coupe, type de conservation, données météo...);
- Définir les fourrages à échantillonner ;
- Echantillon représentatif!
- Attention à une erreur :
 - Conséquences financières et agronomiques ;
 - Perte de temps et d'argent.

Echantillonnage des fourrages

Définir les fourrages à échantillonner

La première étape de l'échantillonnage consiste à identifier des lots de fourrages ayant des caractéristiques identiques (même flore, même itinéraire phytotechnique, ...), produits et/ou conditionnés dans des circonstances identiques. Les critères définissant un lot de fourrages peuvent donc être la composition botanique, le type de sol, la fertilisation, le stade de coupe, le numéro de coupe, les conditions de récolte, l'utilisation d'additifs, les conditions d'entreposage, les infestations éventuelles. Decruyenaere et al., 2008

Echantillonnage des balles rondes

Une sonde bien aiguisée est nécessaire pour l'échantillonnage des balles rondes et des balles carrées de foin sec ou d'ensilage. Dans les deux cas, les parties non consommables par les animaux (moisies...) ne sont pas échantillonnées. Pour réaliser un échantillon représentatif, on recommande de prélever au moins dans 10 balles, tout en sachant que plus le nombre de balles échantillonnées augmente, plus la précision de l'analyse s'améliore.

Evaluation des stocks: pesée des ballots

Echantillonnage des silos

Dans le cas des silos (tour, couloir, taupinière...), l'échantillonnage peut être effectué au moment de la mise en silo, pendant la conservation ou lors du désilage. Bien qu'il soit plus facile de constituer l'échantillon au moment de la mise en silo, on conseille généralement de prendre l'échantillon une fois que le fourrage a fermenté, de façon à ce qu'il soit stabilisé et que les conditions d'entreposage soient connues. Il ne faut pas oublier d'identifier ou de repérer l'endroit dans le silo où se situe le lot de fourrages échantillonné.

Decruyenaere et al., 2008

Evaluation des stocks: cubage des silos

silo couloir herbe	silo couloir maïs
--------------------	-------------------

Masse volumique (kgMS/m³)								
	Teneur en matière sèche (%)							
Hauteur		Herbe (hachée) Maïs						
dans le silo	20 à 30	30 à 40	40 à 50	50 à 60	20 à 30	30 à 40		
< 1,00 m	175	208	226	231	170	180		
1,00 à 2,00 m	181	214	233	238	190	203		
2,00 à 3,00 m	188	220	239	244	210	219		
3,00 à 4,00 m	191	224	242	247	218	227		

NB: si le fourrage est mal haché (vieille autochargeuse) et/ou mal tassé, les densités sont inférieures.

NB: les valeurs renseignées indiquent la densité à l'emplacement défini par hauteur dans le silo.

NB: les valeurs de densité sont plus élevées au centre du silo qu'au bord même pour des silos couloirs.

Référence : note technique n°59 Etude technico économique du stockage et de la distribution des fourrages. CRA Dpt GR. O Miserque - S Tissot - O Oestges.

Densité des silos d'herbe : kg MF/m³ = -896,37 x MS + 1002,5 (Hennart, NP cité dans Bernes A. et al.,

En pratique

- Identification :
 - Chaque échantillons doit avoir une référence permanente;
- Fiche de renseignement :
 - A remplir;
 - Disponible au laboratoire d'analyse ;
 - Cela permet de dégager des résultats plus complets ;
 - Elle comprend également :
 - La date et le numéro de coupe ;
 - Le type de conservation et de conditionnement ;
 - Le type de fourrage ;

- La présence d'un conservateur ou non ;
- Le type d'exploitation (spéculation et type d'agriculture).

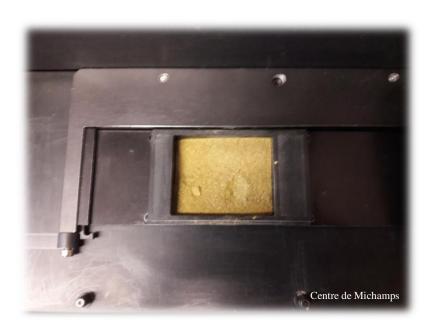
1 - La réception

A l'arrivée du fourrage, celui-ci est réceptionné (nom de la parcelle, date de coupe, type de fourrage), reçoit un numéro de laboratoire et est encodé dans la base de données.

2 - La séchage

Cette étape permet de déterminer la matière sèche (MS) : l'échantillon est glissé dans un sac micro perforé, une pesée en frais est effectuée. Ensuite, cet échantillon est placé dans une étuve à 55°C pendant minimum 48h. Après séchage, il est à nouveau pesé. Cette opération détermine la teneur en MS (%) de l'échantillon.

3 – Le broyage

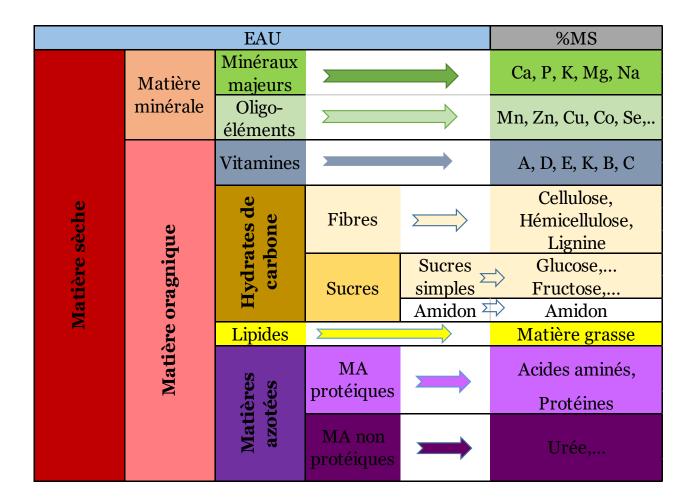

L'échantillon va être broyé par un moulin. En un seul passage pour obtenir des particules assez fines (0.5 mm).

4 – L'analyse infra-rouge

L'échantillon est placé dans une coupelle spécifique pour la prise du spectre infrarouge. Ce spectre est comparé à plusieurs spectres connus dans une base de données déterminées (REQUASUD). Les différentes valeurs alimentaires (VEM, VEVI, DVE, OEB, ...) sont ainsi quantifiées et permettent de réaliser des rations équilibrées et économiques.

5 – L'analyse des minéraux

Le fourrage est d'abord minéralisé à chaud en présence d'acide. Les minéraux totaux (K, P, Ca, Mg et Na) sont extraits et mis en solution. Le filtrat recueilli est analysé par spectromètre d'absorption atomique pour quantifier ceux-ci.



6 – Le bulletin d'analyses

Les différents résultats obtenus sont encodés et retranscrits sur un bulletin d'analyses. Un conseil sur la qualité du fourrage accompagne ce bulletin.

La composition:

Teneur en eau (%):

Mesure la teneur en eau qui est utile à l'établissement des rations par rapport à la capacité d'ingestion des animaux, teneur en matière sèche, permet d'évaluer les risques pendant la conservation.

Cendres (% de dans la MS):

Recherches et vulgarisation

Cendres totales = cendres solubles * + cendres insolubles

Elle intervient dans l'estimation de la valeur énergétique des fourrages. Les cendres totales sont obtenues par calcination dans la matière sèche. La teneur ne doit pas dépasser 2%. Si on est au dessus de 2% cela signifie qu'il y présence de terre dans le fourrage (contamination surtout dans les ensilages).

Cendres solubles contiennent des minéraux.

Decruyenaere et al., 2008

Matières protéiques totales (% dans la MS) – MPT:

C'est la base de l'estimation de la valeur protéique. Elle définit l'aptitude de l'aliment à fournir des acides aminés pour l'animal.

Hydrates de carbone de RESERVE - sucres solubles et amidon (% dans la MS):

Les sucres font parties des hydrates de carbone de réserve de la plante. Ils représentent la source d'énergie la plus facile à utiliser par l'animal. Ils sont totalement solubles dans le tube digestif.

L'amidon a une digestibilité quasi totale. Mais sa vitesse de dégradation varie en fonction de son origine:

- Facilement solubles et dégradables: orge et avoine,...
- Peu solubles et plus lents à dégrader: maïs, sorgho,...

Decruyenaere et al., 2008

La valeur de structure

Chaque aliment a une valeur de structure (VS). La structure mesure la contribution d'un aliment à un fonctionnement optimum et stable du rumen, sur base de la quantité et des propriétés de ses hydrates de carbone. Celle-ci dépend donc principalement de sa teneur en fibres (hydrates de carbone de structure) :

- Cellulose brute;
- ₩ NDF, ADF, ADL.

La valeur de structure limite l'ingestion mais favorise :

- Production de salive
- Motricité du rumen
- Production d'AGV

Elle doit au moins être égale à 1

Exemple: ensilage d'herbe

- Moyenne = 3,1
- Min = 2,1
- Max = 4,1

Les fibres

L'importance de la teneur en fibres des aliments est liée tout autant à l'aspect «énergétique » qu'à l'aspect « encombrement », nécessaire au bon fonctionnement du système digestif de l'animal. La cellulose brute (méthode Weende) est généralement utilisée mais il est possible de caractériser plus précisément les types de parois avec :

Decruyenaere et al., 2008

- NDF : Neutral Detergent Fiber :
 - Hémicellulose, cellulose et lignine ;
- M ADF : Acid Detergent Fiber :
 - Cellulose et lignine ;
 - Hémicellulose = NDF ADF
- ADL : Acid Detergent Lignin
 - Lignine:
 - Cellulose = ADF ADL

L'énergie

- Système hollandais :
 - VEM = valeur énergétique pour le lait :

```
→ unités : /kg de MS ;
```

VEVI = valeur énergétique pour la viande :

```
→ unités : /kg de MS ;
```

- Système français :
 - UFL = valeur énergétique pour le lait :

Recherches et vulgarisation

```
→ unités : /kg de MS ;
```

UFV = valeur énergétique pour la viande :

→ unités : /kg de MS ;

En Belgique → Système HOLLANDAIS

Les protéines

- Système hollandais :
 - DVE = protéines digestibles dans l'intestin :
 - → unités : g/kg de MS ;
 - OEB = balance azotée dans le rumen :
 - → unités : g/kg de MS.
- Système français :
 - PDI = protéines digestibles dans l'intestin :
 - → unités : g/kg de MS ;
 - * PDIA = protéines alimentaires ;
 - * PDIE = à partir de la fraction énergie ;
 - * PDIN = à partir de la fraction azotée.

De nombreux systèmes pour estimer les protéines

- MPT (ou MAT) : matières protéiques totales (ou matières azotées totales) ;
 - Déterminer la teneur en azote du fourrage.

Ancien système

- PBD (ou MAD) : protéines brutes digestibles (ou matières azotées digestibles) ;
 - Toutes les protéines alimentaires, y compris l'azote non protéique, non excrétées sont utilisées par l'animal.

Nouveau système

DVE (protéines digestibles dans l'intestin) – OEB (balance azotée dans le rumen)

Système français

Résultats des analyses de fourrages réalisées par le Centre de Michamps en Province de Luxembourg en 2018.

Nombre de fourrages analysés en 2018*

Analyses de fourrages (tous venants pour 2018) réalisées par le Centre de Michamps pour des agriculteurs:

1150 analyses

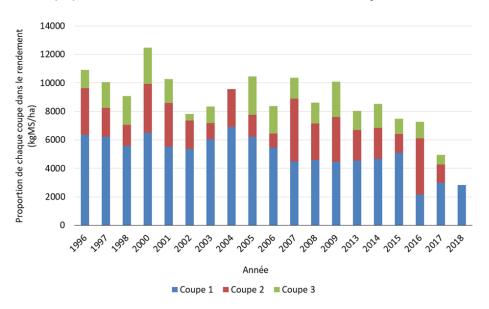
Total général des analyses de fourrages (agriculteurs, essais,...) : +/- 4000 analyses.

Type d'aliments	Nombres
Céréales	36
Céréales immatures	26
Divers	25
Luzerne	28
Graminées + légumineuses ensilées	22
Graminées + légumineuses frais	13
Herbes ensilées	376
Herbes fraîches	256
Foin	56
Maïs épi broyé	14
Maïs fourrage ensilé	112
Maïs fourrage frais	166

^{*} Principales catégories en Prov. de Lux

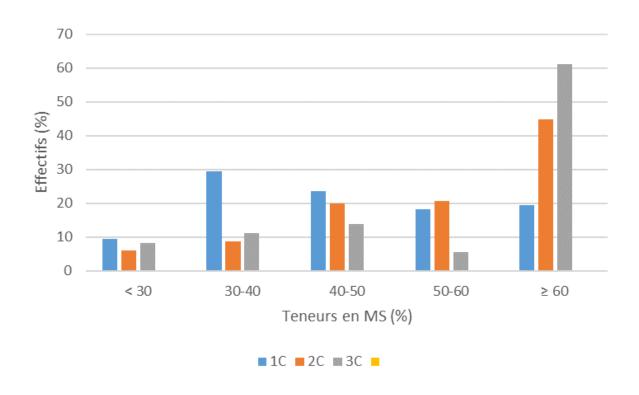
Synthèse des valeurs alimentaires des principales catégories

Type d'aliments	MS (%)	VEM (/kg de MS)	DVE (g/kg de MS)	OEB (g/kg de MS)	Cellulose (%)	Digestibilité (%)
Céréales	86.05	1099.76			10.08	85.86
Céréales immatures	36.95	768.51	47.52	3.73	31.84	59.46
Divers	75.64	1040.39	48.63	18.83	12.52	85.44
Luzerne	63.69	798.13	68.67	34.23	28.25	64.96
Graminées + légumineuses ensilées	37.29	842.47	57.50	36.67	26.80	72.87
Graminées + légumineuses frais	33.68	801.76	67.79	-2.75	29.16	63.37
Herbes ensilées	47.81	815.88	57.15	10.86	29.16	68.94
Herbes fraîches	31.61	907.84	83.99	7.60	25.40	73.85
Foin	85.20	748.22	51.38	-31.45	32.59	58.08
Maïs épi broyé	54.16	1124.53	86.31	-47.20	9.46	87.97
Maïs fourrage ensilé	36.66	937.20	48.19	-30.92	20.22	73.10
Maïs fourrage frais	33.48	911.66	44.32	-31.40	20.74	72.71


Synthèse des valeurs alimentaires de l'herbe ensilée

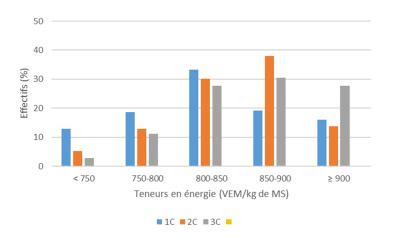
Coupe	Valeur	MS (%)	VEM (/kg de MS)	DVE (g/kg de MS)	OEB (g/kg de MS)	Cellulose (%)	Digestibilité (%)
1C (n=225)	Moyenne	46.67	827.72	58.34	11.82	30.07	69.50
	Médiane	43.83	823.83	57.84	8.62	30.20	69.73
2C (n=116)	Moyenne	56.73	847.16	67.62	9.87	28.09	71.93
	Médiane	57.58	851.04	68.58	8.13	28.08	72.64
3C (n=35)	Moyenne	57.95	862.97	71.49	17.70	25.39	74.55
	Médiane	63.62	863.10	72.97	17.87	24.72	74.54

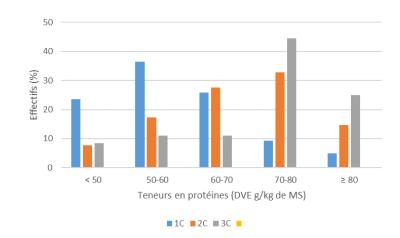
Synthèse des valeurs alimentaires de l'herbe ensilée


Répartition des rendements (%) en matière sèche en fonction des coupes entre 1996 et 2018.

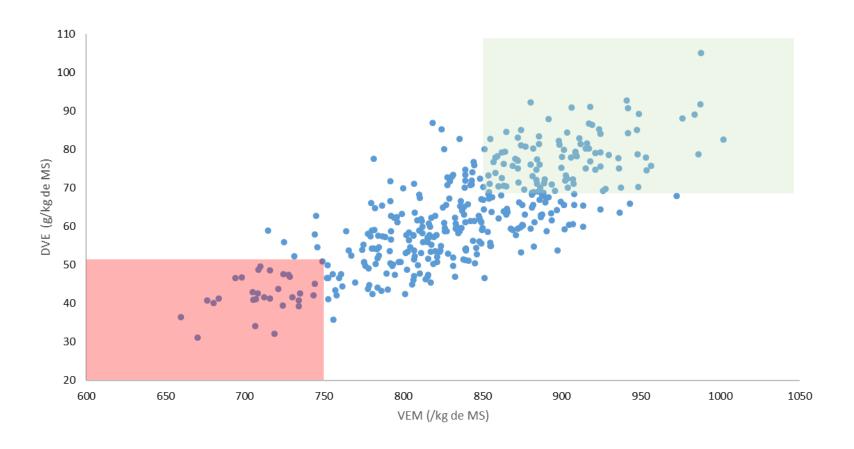
La première coupe est de loin la plus importante avec en moyenne 60 % du rendement. La deuxième représente environ 25 % et la 3^{ème} 15 %. Des variations interannuelles importantes peuvent survenir, notamment les années où les conditions climatiques sont particulièrement défavorables au ray-grass anglais.

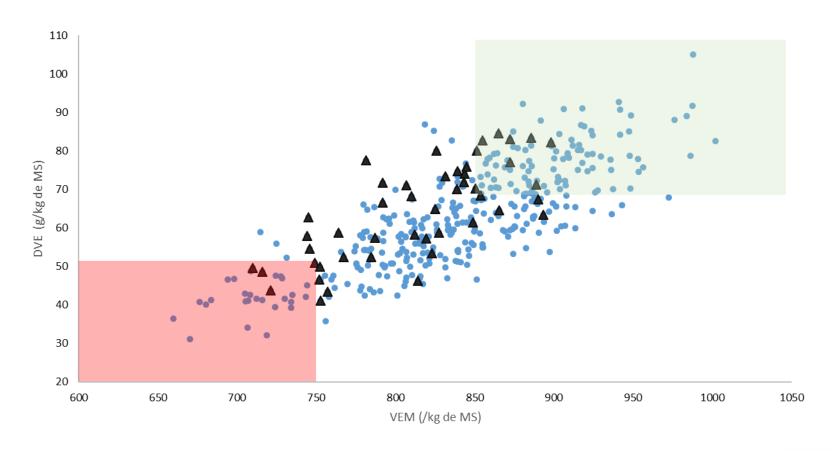
Synthèse des valeurs alimentaires de l'herbe ensilée


La matière sèche



Synthèse des valeurs alimentaires de l'herbe ensilée

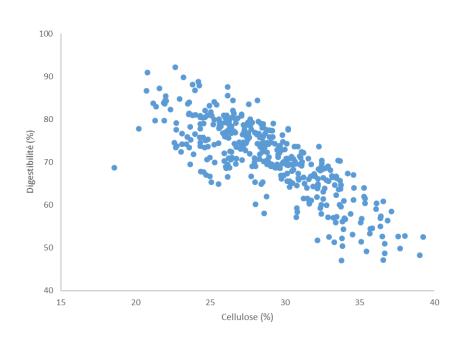

Classe Appr	Appréciation	MAT (g/kg de MS)		DVE (g/kg de MS)		VEM (/kg de MS)	
Classe	SSE Appreciation	Ensilage d'herbe	Foin	Ensilage d'herbe	Foin	Ensilage d'herbe	Foin
1	Teneurinsuffisante	< 90	< 60	< 50	< 30	< 750	< 650
2	Teneur faible	= 90 - 110	= 60 - 180	= 50-60	= 30 - 40	= 750-800	= 650 - 700
3	Teneur moyenne	= 110-130	= 80 - 100	= 60-70	= 40 - 50	= 800-850	= 700 - 750
4	Bonne teneur	= 130-150	= 100 - 120	= 70-80	= 50 - 60	= 850-900	= 750 - 800
5	Très bonne teneur	> ou = 150	> ou = 120	> ou = 80	> ou = 60	> ou = 900	> ou = 800

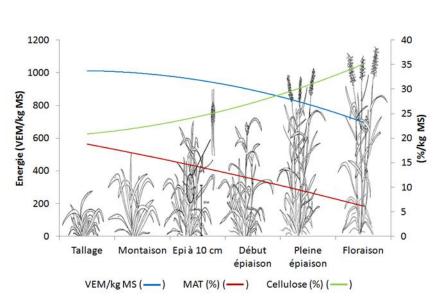


34

Synthèse des valeurs alimentaires de l'herbe ensilée

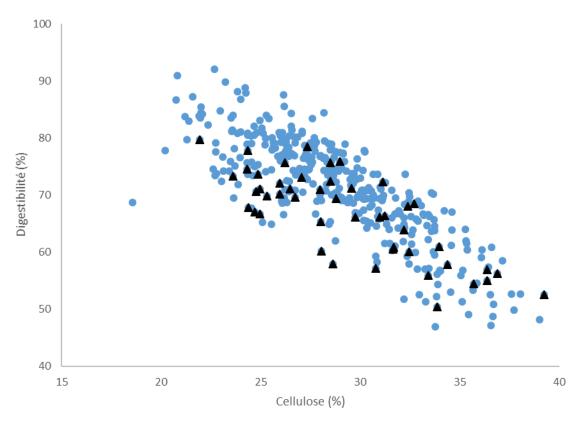
Synthèse des valeurs alimentaires de l'herbe ensilée.





Synthèse des valeurs alimentaires de l'herbe ensilée

Cellulose et digestibilité


Stade de développement et valeur alimentaire

Crémer, 2014

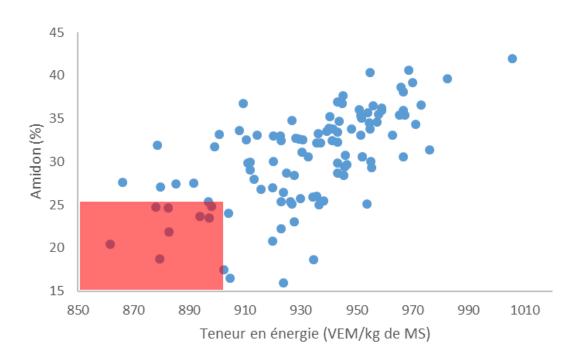
Synthèse des valeurs alimentaires de l'herbe ensilée

Cellulose et digestibilité

Synthèse des valeurs alimentaires du foin

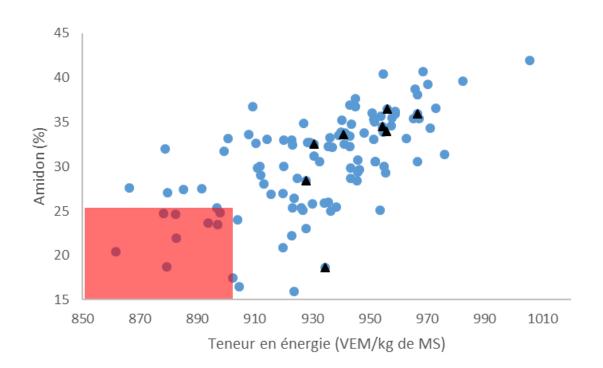
	Valeur	MS (%)	VEM (/kg de MS)	DVE (g/kg de MS)	OEB (g/kg de MS)	Cellulose (%)	Digestibilité (%)
Foin (n=56)	Moyenne	85.09	760.85	55.93	-26.19	31.50	59.91

Classe	Appréciation	DVE (g/kg de MS)	VEM (/kg de MS)
		Foin	Foin
1	Teneur insuffisante	< 30	< 650
2	Teneur faible	= 30 - 40	= 650 - 700
3	Teneur moyenne	= 40 - 50	= 700 - 750
4	Bonne teneur	= 50 - 60	= 750 - 800
5	Très bonne teneur	> ou = 60	> ou = 800


Synthèse des valeurs alimentaires du maïs

	Valour	MS (%)	VEM (/kg	DVE (g/kg	OEB (g/kg	Cellulose	Digestibilité	Amidon
	Valeur	1013 (%)	de MS)	de MS)	de MS)	(%)	(%)	(%)
Maïs épis broyés (n=14)	Moyenne	54.16	1124.53	86.31	-47.20	9.46	87.97	56.68
iviais epis bioyes (II-14)	Médiane	53.01	1130.00	93.72	-56.06	9.02	88.29	57.24
Maïs fourrages ensilés (n=112)	Moyenne	36.05	932.46	47.49	-30.18	20.46	72.58	30.54
ividis fourrages effsiles (II–112)	Médiane	35.98	935.87	47.18	-30.08	20.34	72.93	31.55
Maïs fourrages frais (n=166)	Moyenne	37.04	921.86	46.45	-33.00	20.31	72.94	29.37
Iviais iourrages frais (fi–100)	Médiane	34.84	924.00	46.01	-33.38	20.28	73.61	30.03

Synthèse des valeurs alimentaires du maïs


Maïs fourrages ensilés

Synthèse des valeurs alimentaires du maïs

Maïs fourrages ensilés

Quelques chiffres sur les rendements matières sèches en maïs

Année	Source	Rendements en t de MS dans différentes régions agricoles				
		Ardenne	Famenne	Gaume		
2006	CIPF	11,8	15,3	12,8		
2007	CIPF	10,9	15,6	16,6		
2008	CIPF	11,6	15,3	17,0		
2009	CIPF	13,4	14,2	18,6		
2010	CIPF	12,6	14,2	15,3		
2011	CIPF	12,2	18,2	16,7		
2012	CIPF	10,0	17,8	13,4		
2012	GAL HSFA	11,8	-	-		
2013	GAL HSFA	10,5	-	-		
2017	Centre de Michamps	15.8				
2018	Centre de Michamps - CIPF	14.9				
Moyenne		12.32	15.8	15.77		

Comment améliorer les résultats des ensilages ?

- Récolter au bon stade suivant son cheptel mais avant l'épiaison;
- Implanter avec des espèces/mélanges adaptés aux conditions d'exploitations ;
- Implanter des légumineuses ;
- Limiter les pertes lors des opérations de récolte et lors de la conservation ;
- Fertiliser raisonnablement ses parcelles et respecter les équilibres minéraux.

Comment améliorer les résultats des ensilages ?

- Récolter au bon stade suivant son cheptel mais avant l'épiaison ;
- C'est le stade de(s) graminée(s) qui détermine le stade d'exploitation ;
- 1C → Au plus tard début épiaison pour les graminées → ensilage ;
- Pleine épiaison voir fin épiaison → foin ;

- Conditionneur → augmente la vitesse de séchage ;
- Attention aux pertes d'effeuillage → légumineuses ;

Comment améliorer les résultats des ensilages ?

Hauteur de fauche et rendement

Des essais menés à Libramont (Limbourg, 1997):

La production totale annuelle d'une prairie est d'autant plus élevée que les coupes sont effectuées à un niveau bas.

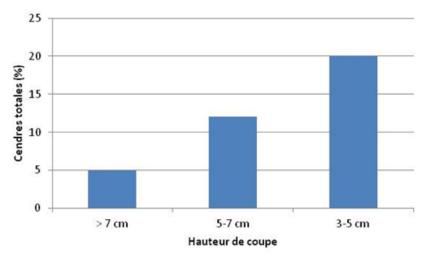
Ces essais ont montré que la productivité de la prairie diminue de 24 % si les coupes sont effectuées à 8 cm au lieu de 4 cm chaque fois que l'herbe atteint 15 cm de hauteur.

Recherches et vulgarisation

Raisonnement un peu simpliste! Il faut nuancer!

Comment améliorer les résultats des ensilages ?

Hauteur de fauche à 5-7 cm prp à 3-4cm

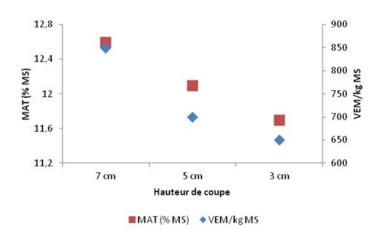

	Avantages	Inconvénients		
4	Meilleure ventilation du fourrage Moins de terre ou de matière organique récoltée	Baisse du rendement		
¥	Meilleure conservation			
4	Augmentation de la teneur en énergie et en protéines du fourrage			
4	Meilleure repousse			
+	Moins de risque de prolifération d'adventices			
Y	Moins de desséchement du sol			

Comment améliorer les résultats des ensilages ?

Hauteur de fauche et qualité

- Fauche à 5-7 cm \rightarrow séchage plus rapide et plus régulier \rightarrow réduction des pertes;
- Fauche trop haute \rightarrow diminue les souillures (teneurs en cendres \rightarrow cendres insolubles):

Influence de la hauteur de coupe sur la teneur en cendres totales du fourrage (Boonen J., 2010)

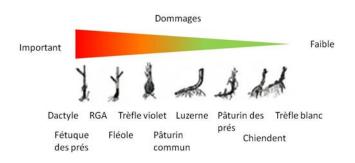


Comment améliorer les résultats des ensilages ?

Hauteur de fauche et qualité

- Hauteur de coupe importante = une augmentation de la teneur en énergie et en protéines

Influence de la hauteur de coupe sur la teneur en matières azotées totales (MAT) et en énergie (VEM) du fourrage (Boonen J., 2010)



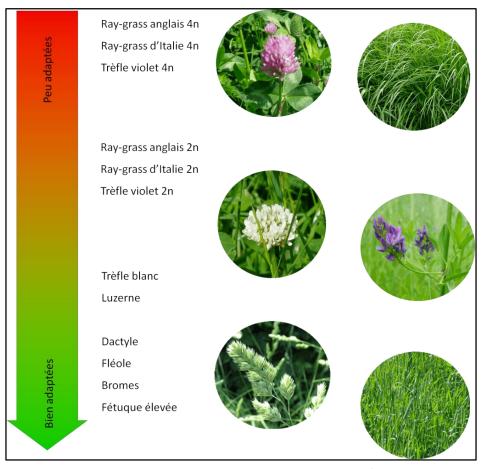
Comment améliorer les résultats des ensilages ?

Hauteur de coupe et repousse

- Hauteur de coupe trop rase = impact négatif sur la capacité de repousse

Impact d'une coupe trop rase sur différentes espèces prairiales (Boonen J., 2010)

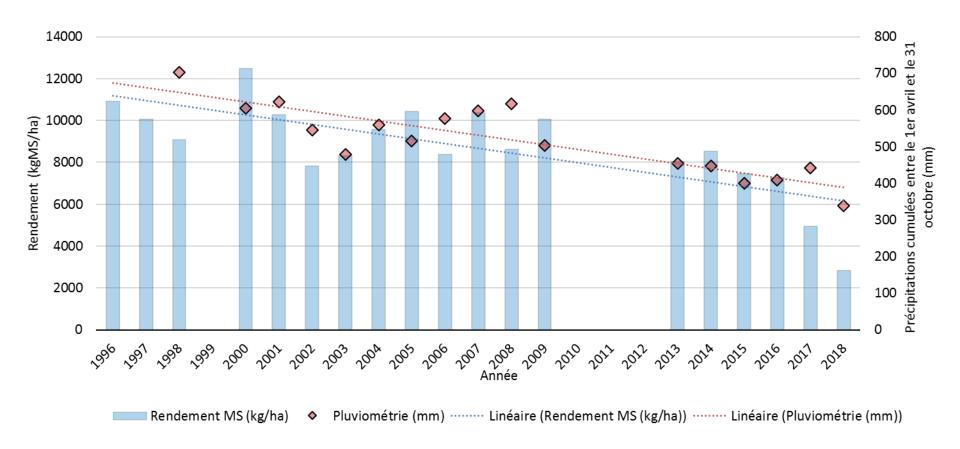
La parcelle de gauche, où se trouve l'assiette d'une faucheuse, a été fauchée trop bas (3 cm) ce qui va limiter fortement la capacité de repousse et favoriser l'installation d'adventices (Boonen J., 2010)



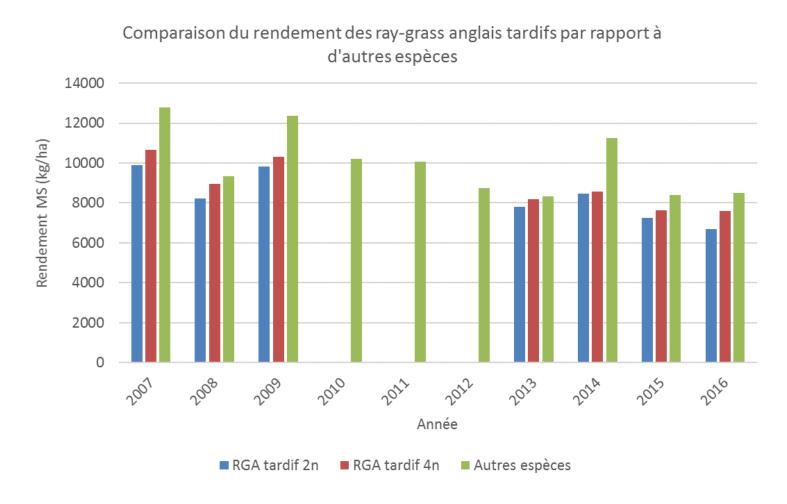
Comment améliorer les résultats des foins ?

- Récolter au maximum au stade épiaison ;
- Implanter avec des espèces/mélanges adaptés aux conditions d'exploitations ;
- Implanter des légumineuses (à nuancer);
- W Limiter les pertes lors des opérations de récolte et lors de la conservation ;
- W Fertiliser raisonnablement ses parcelles et respecter les équilibres minéraux ;
- Faire du foin sur les regains.

Facilité de séchage de différentes espèces



Crémer, 2013


Rendement sur les productions fourragères en Ardenne

Quelques chiffres (RGA tardif)

Rendement sur les productions fourragères en Ardenne

Quelques chiffres

Cultiver des céréales immatures pourquoi pas ?

W Différents types de produits:

La plante entière est récoltée au stade « montaison » : la culture est fauchée en vert. Exemple un seigle fauché avant une culture de maïs ;

La plante entière est ensilée au stade « épiaison » : la culture est récoltée au stade épiaison de la céréale dominante et, est ensilée avec les tiges et les feuilles. Elle est souvent utilisée comme plante abri lors de l'implantation d'une nouvelle prairie au printemps ;

La plante entière est ensilée au stade « laiteux-pâteux » : la culture est récoltée à 30-40 % de MS, au stade « laiteux-pâteux », et est ensilée avec les tiges et les feuilles ;

Le grain humide ou « céréale inertée » est récolté au stade « pâteux-maturité physiologique » : la culture est récoltée à la moissonneuse batteuse à 25-30 % d'humidité. Ensuite le grain est aplati et mis en silo ou en boudin avec un conservateur.

Cultiver des céréales immatures pourquoi pas ?

Densité de semis:

Période du semis	Tritical e (kg/ha)	Avoine (kg/ha)	Orge (kg/ha)	Pois fourrage r (kg/ha)	Pois protéagine ux (kg/ha)	Semences pour prairie (kg/ha)
Hiver	180			25		
Hiver	150	30		25		
Printemps		100		25		
Printemps		50	50	25		
Printemps		40-50		25		30-35
Printemps			60		80	30-35
Printemps (en grain inerté)			100		100	

Profondeur de semis:

Graminées: 1-2 cm Céréales: +/-3 cm Pois: 5 cm

Mélange céréales-pois: 4 cm

Cultiver des céréales immatures pourquoi pas ?

- Céréales immatures comme plante abri
- Implantation d'une prairie en sous étage: Diminution de la dose de céréales de printemps de 40 %;

Ex. (kg/ha): 60 kg d'avoine + 25 kg de pois fourragers.

Mélanges prairies semés à 30-35 kg/ha;

Ex. (kg/ha): 10 kg de RGA int., 15 kg de fétuque des prés, 5 kg de fléole, 3 kg de TB, 2 kg TV.

- Garantie d'une production fourragère en 1C;
- Protection du jeune semis de graminées (vent, froid, adventices).

Cultiver des céréales immatures pourquoi pas ?

Fertilisation (unités/hectare):

La fertilisation des céréales immatures s'effectue au printemps.

	Céréales sans pois	Céréales avec pois
N	Céréales d'hiver : 80 unités	0-30
	Céréales de printemps : 60 unités	0-30
P_2O_5	100	100
K_2O	150	150

Remarques:

- pas de fractionnement de l'azote pour les céréales de printemps ;
- pas de désherbage chimique (sauf si gros problèmes : rumex...);
- pas de fongicide;
- pas de raccourcisseur de paille ;
- il faut tenir compte de l'apport des engrais de ferme (compost, fumier, lisier).

Cultiver des céréales immatures pourquoi pas ?

Stade de récolte

- Stade « laiteux-pâteux » des grains de céréales (30-40%) de MS = meilleur compromis entre la quantité, la qualité et la valorisation par les animaux ;
- Quand présence de pois fourragers: +/- 10 jours après le début floraison ;
- Quand pois protéagineux: pois au stade pâteux (+/- 100 jours après le semis).

Cultiver des céréales immatures pourquoi pas ?

Récolte

Différentes méthodes:

	Avantages	Inconvénients
Coupe KEMPER (becs rotatifs utilisés pour le maïs)	 Amortissement du matériel utilisé pour le maïs Hachage régulier 	 Coupe irrégulière Inefficacité sur plantes versées Bourrage possible quand il y a de la vesce
Fauchage à la rotative et ressuyage sur le champ + ramassage au pick-up	- Coupe régulière - Gain de temps le jour de l'ensilage	 Perte d'épis au ramassage Attention à l'évolution de la MS 2 passages : fauche et ensilage Conditionneuse à proscrire
Coupe directe spécifique (à disques)	- Coupe régulière - Pas de pertes	- Faible rentabilité d'un matériel spécifique

Cultiver des céréales immatures pourquoi pas ?

Quelques chiffres de rendements

Málongo				
Mélange	kg MS/ha	kVEM/ha	kg MAT/ha	kg amid./ha
Epeautre	9961	7563	668	1480
Epeautre – Pois fourrager	9284	7310	757	1278
Epeautre - Pois fourrager - Vesce	9636	7719	801	1416
Epeautre - Vesce	9550	7436	670	1448
Triticale	11193	9089	729	2124
Triticale - Avoine – Pois fourrager	10044	8048	730	1691
Triticale - Epeautre	10267	8193	710	1685
Triticale – Epeautre – Pois fourrager	10703	8812	874	1746
Triticale – Epeautre – Pois fourrager - Vesce	11169	9155	977	1644
Triticale – Pois fourrager	11082	9182	862	1935
Triticale – Pois fourrager - Vesce	11018	9167	872	2013
Triticale - Vesce	10254	8369	652	1939

Céréales d'hiver : Mélanges les plus productifs avec du triticale → 10 t de MS

Cultiver des céréales immatures pourquoi pas ?

Quelques chiffres de rendements

Málamas		Rend	lement	
Mélange	kg MS/ha	kVEM/ha	kg MAT/ha	kg amid./ha
Avoine	9354	6850	639	1564
Avoine - Pois fourrager	9103	6876	640	1477
Avoine – Pois fourrager - Vesce	9606	7052	593	1609
Avoine – Pois protéagineux	9148	6860	581	1565
Avoine - Vesce	9255	7064	640	1638
Froment	7873	6251	683	1126
Froment – Avoine – Pois fourrager - Vesce	8650	6711	660	1380
Froment – Pois fourrager	8141	6376	664	1153
Froment – Pois fourrager - Vesce	7550	5918	627	1108
Froment – Pois protéagineux	8009	6416	703	1264
Froment - Vesce	7359	5822	646	1064
Orge – Avoine – Pois fourrager	8823	6994	604	1703

Céréales de printemps : Mélanges les plus productifs avec de l'avoine → 9 t de MS

La qualité des fourrages en fonction des besoins alimentaires des bovins allaitants

Rappels

Recommandations alimentaires

- Vache allaitante BBB
 - Energie: 700 à 900 VEM/kg MS
 - Protéines : 40 à 70 g DVE/kg MS
 - Ingestion : de 9 à 15 kg MS/jour

Michamps 19-12-2011

Unité de Zootechnie - Y. Beckers - GxABT

La qualité des fourrages en fonction des besoins alimentaires des bovins allaitants

Quelques chiffres pour les ensilages d'herbe

Recommandations alimentaires

- Vache allaitante BBB
 - Energie: 700 à 900 VEM/kg MS
 - Protéines: 40 à 70 g DVE/kg MS
 - Ingestion : de 9 à 15 kg MS/jour

Energie:

- → 25% des échantillons avec une teneur en énergie < à 800 VEM /kg de MS;
- → 56.7% des échantillons avec une teneur en énergie < à 850 VEM /kg de MS.

Protéines:

- → 30% des échantillons avec une teneur en protéines < à 55 g de DVE/kg de MS
- → 69 % des échantillons avec une teneur en protéines < à 70 g de DVE/kg de MS.

Michamps 19-12-2011

Recherches et vulgarisation

Unité de Zootechnie - Y. Beckers - GxABT

Conclusions

- → Travailler la qualité de ses fourrages et en particulier de sa 1ère coupe ;
 - Faucher plus tôt !!!
- → Etre attentif à la récolte des maïs ;
 - Teneur en MS!!!
- → Evaluer ses stocks et ses besoins en fourrages ;
- → Repenser son système fourrager ?
- → Analyser ses fourrages ;
- → Connaître les besoins de ses animaux ;
- → Etablir des rations pour combler au maximum les besoins ;
- → Se faire conseiller et encadrer.

Horritine, 1 - 6600 Bastogne
A. Bernes (0472/03 80 92) - S. Crémer (0498/73 73 67)
sebastien.cremer@uclouvain.be – aude.bernes@uclouvain.be
www.centredemichamps.be

